Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Int J Mol Sci ; 23(24)2022 Dec 08.
Article in English | MEDLINE | ID: covidwho-2200318

ABSTRACT

The nasal-associated lymphoid tissues (NALT) are generally accepted as an immune induction site, but the activation of naïve T-cells in that compartment has not been well-characterized. I wanted to determine if early events in naïve CD4+ T cell activation and the extent of antigen specific cell division are similar in NALT to that observed in other secondary lymphoid compartments. I performed antigen tracking experiments and analyzed the activation of naïve antigen-specific CD4+ T cells in the nasal-associated lymphoid tissues (NALT). I directly observed transepithelial transport of fluorescently labeled antigen from the lumen of the airway to the interior of the NALT two hours following immunization. One day following intranasal (i.n.) immunization with antigen and adjuvant, antigen-specific CD4+ T cells in the NALT associated as clusters, while antigen-specific CD4+ T cells in control mice immunized with adjuvant only remained dispersed. The antigen-specific CD4+ populations in the NALT and cranial deep cervical lymph nodes of immunized mice expanded significantly by day three following immunization. These findings are consistent with initial activation of naïve CD4+ T cells in the NALT and offer insight into adjuvant mechanism of flagellin in the upper respiratory compartment.


Subject(s)
Flagellin , Lymphoid Tissue , Vaccines, Subunit , Animals , Mice , Adjuvants, Immunologic , Administration, Intranasal , CD4-Positive T-Lymphocytes , Flagellin/immunology , Immunization , Mice, Inbred BALB C , Nasal Mucosa , T-Lymphocytes , Vaccines, Subunit/immunology
2.
Sci Adv ; 8(38): eabq2422, 2022 09 23.
Article in English | MEDLINE | ID: covidwho-2053090

ABSTRACT

Myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a debilitating disease with an unclear etiology and pathogenesis. Both an involvement of the immune system and gut microbiota dysbiosis have been implicated in its pathophysiology. However, potential interactions between adaptive immune responses and the microbiota in ME/CFS have been incompletely characterized. Here, we profiled antibody responses of patients with severe ME/CFS and healthy controls against microbiota and viral antigens represented as a phage-displayed 244,000 variant library. Patients with severe ME/CFS exhibited distinct serum antibody epitope repertoires against flagellins of Lachnospiraceae bacteria. Training machine learning algorithms on this antibody-binding data demonstrated that immune responses against gut microbiota represent a unique layer of information beyond standard blood tests, providing improved molecular diagnostics for ME/CFS. Together, our results point toward an involvement of the microbiota-immune axis in ME/CFS and lay the foundation for comparative studies with inflammatory bowel diseases and illnesses characterized by long-term fatigue symptoms, including post-COVID-19 syndrome.


Subject(s)
Antibody Formation , Fatigue Syndrome, Chronic , Flagellin , Gastrointestinal Microbiome , Epitopes , Fatigue Syndrome, Chronic/diagnosis , Fatigue Syndrome, Chronic/immunology , Flagellin/immunology , Humans
3.
Cell Rep ; 37(11): 110112, 2021 12 14.
Article in English | MEDLINE | ID: covidwho-1530687

ABSTRACT

An ideal vaccine against SARS-CoV-2 is expected to elicit broad immunity to prevent viral infection and disease, with efficient viral clearance in the upper respiratory tract (URT). Here, the N protein and prefusion-full S protein (SFLmut) are combined with flagellin (KF) and cyclic GMP-AMP (cGAMP) to generate a candidate vaccine, and this vaccine elicits stronger systemic and mucosal humoral immunity than vaccines containing other forms of the S protein. Furthermore, the candidate vaccine administered via intranasal route can enhance local immune responses in the respiratory tract. Importantly, human ACE2 transgenic mice given the candidate vaccine are protected against lethal SARS-CoV-2 challenge, with superior protection in the URT compared with that in mice immunized with an inactivated vaccine. In summary, the developed vaccine can elicit a multifaceted immune response and induce robust viral clearance in the URT, which makes it a potential vaccine for preventing disease and infection of SARS-CoV-2.


Subject(s)
COVID-19 Vaccines/immunology , Combined Modality Therapy/methods , SARS-CoV-2/immunology , Adjuvants, Vaccine , Administration, Intranasal , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Viral/immunology , Antigens/immunology , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/genetics , Chlorocebus aethiops , Coronavirus Nucleocapsid Proteins/immunology , Female , Flagellin/immunology , HEK293 Cells , Humans , Immunity/immunology , Immunity/physiology , Immunity, Humoral/immunology , Immunization , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nucleotides, Cyclic/immunology , Phosphoproteins/immunology , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/immunology , Vaccination , Vero Cells
4.
Physiol Genomics ; 52(5): 217-221, 2020 05 01.
Article in English | MEDLINE | ID: covidwho-47305
SELECTION OF CITATIONS
SEARCH DETAIL